Abstract:
The quality of the surface of a semiconductor structure after plasma-chemical etching in plasma of HCl/Ar, HCl/Cl$_{2}$, HCl/H$_{2}$ mixtures, and freon R12 plasma is studied. It is shown that the optimal combination of the etch rate and surface roughness is achieved in the hydrogen chloride and argon mixture. In mixtures with hydrogen, the etch rates are too low for high surface quality; in mixtures with chlorine, the surface roughness exceeds technologically acceptable values due to high etch rates. The high-frequency discharge in freon R12 can be effectively used to etch semiconductors, providing technologically acceptable interaction rates, while retaining a uniform and clean surface.