Abstract:
Defects in mercury-cadmium-telluride heteroepitaxial structures (with 0.3 to 0.4 molar fraction of cadmium telluride) grown by molecular-beam epitaxy on silicon substrates are studied. The low-temperature photoluminescence method reveals that there are comparatively deep levels with energies of 50 to 60 meV and shallower levels with energies of 20 to 30 meV in the band gap. Analysis of the temperature dependence of the minority carrier lifetime demonstrates that this lifetime is controlled by energy levels with an energy of $\sim$30 meV. The possible relationship between energy states and crystal-structure defects is discussed.