RUS  ENG
Full version
JOURNALS // Fizika i Tekhnika Poluprovodnikov // Archive

Fizika i Tekhnika Poluprovodnikov, 2020 Volume 54, Issue 12, Page 1398 (Mi phts6697)

NANOSTRUCTURES : PHYSICS AND TECHNOLOGY 28th International Symposium (Minsk, Republic of Belarus, September, 2020)
Spin Related Phenomena in Nanostructures

Collective spin glass state in nanoscale particles of ferrihydrite

S. V. Stolyarabc, R. N. Yaroslavtsevab, V. P. Ladyginab, D. A. Balaevac, A. I. Pankratsac, R. S. Iskhakova

a Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
b Krasnoyarsk Scientific Center, Federal Research Center KSC, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
c Siberian Federal University, 660041 Krasnoyarsk, Russia

Abstract: Ferromagnetic resonance was used to study three types of ferrihydrite nanoparticles: nanoparticles formed as a result of the cultivation of microorganisms Klebsiella oxytoca; chemically ferrihydrite nanoparticles; chemically prepared ferrihydrite nanoparticles doped with Cu. It is established from the ferromagnetic resonance data that the frequency-field dependence (in the temperature range $T_{\operatorname{P}}<T<T^*$) is described by the expression: 2$\pi\nu/\gamma = H_{\operatorname{R}}+T^{\operatorname{A}}_{(T =0)}\cdot (1-T/T^*)$, where $\gamma$ is the gyromagnetic ratio, $H_{\operatorname{R}}$ is the resonance field. The induced anisotropy $H_{\operatorname{A}}$ is due to the spin-glass state of the near-surface regions. $T_{\operatorname{P}}$ temperature characterizes the energy of the interparticle interaction of nanoparticles.

Keywords: nanoparticles, ferrihydrite, magnetic anisotropy, magnetic resonance.

Received: 23.06.2020
Revised: 23.07.2020
Accepted: 27.07.2020

Language: English


 English version:
Semiconductors, 2020, 54:12, 1710–1712


© Steklov Math. Inst. of RAS, 2024