Abstract:
The high-frequency conductivity of a two-dimensional quantum superlattice with a rectangular cell and a non-associative electron dispersion law has been studied in the presence of a strong quantizing electric field. The impact of superlattice parameters on the nature of the instability regions of an alternating signal with longitudinal and transverse polarization relative to the applied electric field is considered. It is shown that, in general, the characteristics of the amplified signal are significantly influenced not only by the magnitude and direction of the electric field applied to the superlattice, but also by the parameters of the energy spectrum of electrons in the superlattice. In a constant field directed at an angle to the axes of the superlattice, regions may appear where the instability of an alternating signal with arbitrary polarization is realized only at high frequencies.
Keywords:two-dimensional quantum superlattice, non-associative law of dispersion, anisotropy, constant and alternating electric fields, low-frequency and high-frequency characteristics.