RUS  ENG
Full version
JOURNALS // Fizika i Tekhnika Poluprovodnikov // Archive

Fizika i Tekhnika Poluprovodnikov, 2022 Volume 56, Issue 3, Pages 357–362 (Mi phts7023)

Semiconductor physics

Heterostructure of a 2.5 THz range quantum-cascade detector

A. V. Babicheva, E. S. Kolodeznyia, A. G. Gladysheva, D. V. Denisovb, A. Jollivetc, P. Quachc, L. Ya. Karachinskyade, V. N. Nevedomskiyd, I. I. Novikovae, M. Tchernychevac, F. H. Julienc, A. Yu. Egorove

a ITMO University, 197101 St. Petersburg, Russia
b Saint Petersburg Electrotechnical University "LETI", 197022 St. Petersburg, Russia
c Centre de Nanosciences et de Nanotechnologies (C2N), UMR 9001 CNRS, Universite Paris-Saclay, 91120 Palaiseau, France
d Ioffe Institute, 194021 St. Petersburg, Russia
e Connector Optics LLC, 194292 St. Petersburg, Russia

Abstract: The design of the heterostructure of a 2.5 THz range quantum-cascade detector is proposed and heterostructure is grown by molecular-beam epitaxy technique. To optimize the thicknesses of the layers of the heterostructure cascades, a numerical method for iterative solution of the Schrödinger–Poisson equation in the $k\cdot p$ formalism was used. The grown heterostructure of the quantum-cascade detector showed a high structural perfection, confirmed by the small values of the average FWHM of the high-order satellite peaks on the X-ray diffraction rocking curves, which were (8.3 $\pm$ 0.5)". Analysis of dark-field images obtained by transmission electron microscopy showed that the total thickness of the layers in the cascade is (137.3 $\pm$ 6.9) nm, which corresponds to the calculated thickness of the layers in the cascade of the heterostructure of the quantum-cascade detector.

Keywords: superlattices, quantum-cascade detector, epitaxy, gallium arsenide.

Received: 15.10.2021
Revised: 29.10.2021
Accepted: 29.10.2021

DOI: 10.21883/FTP.2022.03.52124.9750



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025