Abstract:
The well-known effect of the local interaction between graphene and photoresist (LIGF) during the creation of biosensors is shown to lead to non-uniform distribution of compressive stresses, which deteriorates the adsorption properties of graphene, parameter reproducibility, and detecting ability of influenza B and SARS-Cov-2 biosensors. It is also shown that controlling the occurrence of LIGF areas on a graphene surface by atomic force microscopy or introducing a protective layer between graphene and photoresist can minimize the non-persistent effect of LIGF. The results of influenza B and SARS-CoV-2 imaging on the graphene surface in biosensor chips in a scanning electron microscope are presented.
Keywords:graphene, biosensors, SARS-CoV-2, influenza virus B.