Abstract:
Electron scattering in the possible $\Delta_1$ models of the conduction band in germanium crystals formed by hydrostatic or uniaxial pressure is investigated. On the basis of the theory of anisotropic scattering, the temperature dependences of the anisotropy parameter of the relaxation times and electron mobility for these models under conditions of scattering at impurity ions, as well as at acoustic and intervalley phonons are obtained. Analysis of the temperature dependences indicates that, in the temperature range of 77–300 K, intervalley scattering becomes substantial. Only for the $\Delta_1$ model formed by uniaxial pressure along the crystallographic direction [100], the electron scattering at intervalley phonons, which correspond to the g transitions, is minor with respect to scattering at acoustic phonons (the intravalley scattering) and impurity ions.