Abstract:
The electrical activity of grain boundaries in multicrystalline silicon grown from metallurgical silicon by the Bridgman method is investigated by the method of electron-beam induced current. The main tendencies of atypical manifestation of the local electrical activity of $\Sigma3\{111\}$ and $\Sigma9\{110\}$ special boundaries are revealed. The structural features of the grain boundaries after selective etching and the impurity-distribution characteristics in multicrystalline silicon are determined by the methods of electron backscattering diffraction and electron-probe microanalysis.