RUS  ENG
Full version
JOURNALS // Fizika i Tekhnika Poluprovodnikov // Archive

Fizika i Tekhnika Poluprovodnikov, 2013 Volume 47, Issue 8, Pages 1094–1101 (Mi phts7993)

This article is cited in 3 papers

Semiconductor physics

Study of the properties of solar cells based on $a$-Si : H-$p$$i$$n$ structures by admittance spectroscopy

A. S. Gudovskikha, A. S. Abramovbc, A. V. Bobyl'b, V. N. Verbitskiib, K. S. Zelentsova, E. M. Ershenkob, D. A. Kudryashova, S. A. Kudryashova, A. O. Monastyrenkoa, A. R. Terraa, E. I. Terukovbc

a St. Petersburg Academic University — Nanotechnology Research and Education Centre of the Russian Academy of Sciences (the Academic University)
b Ioffe Institute, St. Petersburg
c R&D Center TFTE, St.-Petersburg

Abstract: Properties of solar cells based on $a$-Si : H-$p$$i$$n$ structures are studied by admittance spectroscopy. The responses of the density of states in the $(i)a$-Si:H layers and $a$-SiC:H layers in the $p$-type region of the structure are distinguished in the admittance spectra. The density of states in the middle of the mobility gap for $(i)a$-Si:H is estimated to be 5 $\times$ 10$^{16}$ cm$^{-3}$ eV$^{-1}$. It is shown that this value increases during the course of photoinduced degradation to $\sim$ 10$^{17}$ cm$^{-3}$ eV$^{-1}$. For the wide-gap $a$-SiC:H layers, the observed response of the density of states in the valence-band tails made it possible to estimate the lower bound for the density of states at the Fermi level (10$^{18}$ cm$^{-3}$ eV$^{-1}$) and to find the Fermi level position to be 0.4 eV above the valenceband edge. The suggested procedure can be used to optimize the design of solar cells in order to improve their efficiency.

Received: 24.12.2012
Accepted: 10.01.2013


 English version:
Semiconductors, 2013, 47:8, 1090–1096

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025