Abstract:
We consider the neuromorphic dynamics of a filter-free phase locked loop with a phase modulation of a reference oscillator. The transition from pulsed single-spike dynamics to the bursting dynamics can be easily controlled by changing the depth and frequency of phase modulation, as well as the gain factor along the ring of the phase locked loop. The possibility of implementing neuromorphic calculations of the “OR” type in the scheme of three phase locked loops mutually coupled through a common control circuit is shown. The presented results can be used in the design of hardware-implemented neuromorphic networks with increased frequency stability, resistant to noise influences.