Abstract:
The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called “vertical-cavity surface-emitting lasers”) under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of $\sim$30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.