Abstract:
The method of nondestructive X-ray computed tomography (CT) has been used to study the structure of A5083 (magnesium- and manganese-doped aluminum) alloy samples upon impact compression. The initial samples had an average grain size of 600 nm and submicrocrystalline (SMC) structure formed by dynamic equal-channel angular pressing. Three-dimensional CT images of local fracture regions were obtained and the degree of material damage was estimated by calculating the average and maximum size of discontinuities (pores and microcracks) in various cross sections. The techniques of transmission and scanning electron microscopy were used to trace evolution of the SMC structure of impact-compressed alloy and determine the morphological characteristics of spallation surfaces and other defects.