Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing
Abstract:
From analysis of time series obtained on the numerical solution of a plane problem on the motion of a body with an elliptic cross section under the action of gravity force in an incompressible viscous fluid, a system of ordinary differential equations approximately describing the dynamics of the body is reconstructed. To this end, coefficients responsible for the added mass, the force caused by the circulation of the velocity field, and the resisting force are found by the least square adjustment. The agreement between the finitedimensional description and the simulation on the basis of the Navier–Stokes equations is illustrated by images of attractors in regular and chaotic modes. The coefficients found make it possible to estimate the actual contribution of different effects to the dynamics of the body.