Abstract:
The paper presents experimental data on the characteristics of collisions between water suspension droplets and sand particles in a gaseous medium at different initial temperatures. Typical interaction modes (agglomeration, separation) were established. The interaction mode map has been drawn taking into account simultaneous contributions of the inertia, surface tension, and viscosity forces. There were determined conditions for intense fragmentation of liquid droplets, as well as for stable agglomeration of droplets and particles during which suspension droplets get formed. The study has shown that an increase in the temperature of the gaseous medium from 20 to 100$^\circ$C leads to a 30% shift of the boundary between the agglomeration and separation modes towards lower Weber numbers. This was assumed to occur because of changes in the liquids physical properties (viscosity decrease by 30%, surface tension decrease by up to 10%).