Abstract:
The mathematical model of the process of gas hydrate formation during gas injection into a snow massif, saturated with the same gas, is constructed. In axisymmetric formulation, analytical solutions are obtained for the distribution of temperature fields, pressures and phase saturations. It is shown that the appearance of various characteristic zones in a snow massif depends on the initial state of the gas - snow system, determined by temperature and pressure, and the mass flow rate of the injected gas. It has been established that an increase in the intensity of gas injection (gas flow rate) leads to an increase in both the length of the bulk zone of hydrate formation and the increase in the fraction of hydrate at the boundary separating the near and intermediate zones.