Abstract:
The problem of linear perturbations of the sandy bottom in a rectangular channel with a heavy incompressible fluid is formulated. The turbulent viscosity of the flow is defined as a drag coefficient function, and the hydrodynamic equations are written in the long-wave Boussinesq approximation. In the expression for the hydrostatic pressure, a correction is applied to the Boussinesq approximation that changes the sediment discharge. The problem of the development of bottom perturbations is solved taking into account the modified formula of sediment discharge, resulting in analytical expressions for the velocity of bottom perturbations and the wavelength of the fastest-growing bottom perturbations at small Froude numbers.