Abstract:
Problems of nonlinear cylindrical bending of sigmoid functionally graded plates in which material properties vary through the thickness are considered. The variation of the material properties follows two power-law distributions in terms of the volume fractions of constituents. The nonlinear strain-displacement relations in the von Kármán sense are used to study the effect of geometric nonlinearity. The governing equations are reduced to a linear differential equation with nonlinear boundary conditions, yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.