Abstract:
The flow around a heated spherical drop in a viscous non-isothermal gaseous medium with uniformly distributed constant-power heat sources (sinks) acting inside is theoretically described in the Stokes approximation. It is assumed that the mean temperature of the drop surface can differ substantially from the temperature of the ambient gaseous medium. An analytical expression for the drag force and drift velocity in the gravity field is derived by solving hydrodynamic equations with allowance for the temperature dependence of viscosity, thermal conductivity, and density of the gaseous medium.
Keywords:motion of heated drops in a gas, gravitational motion, Stokes approximation, drag force.