Abstract:
In this paper, the dynamic stability of single- and double-walled carbon nanotubes (SWCNT and DWCNT) under dynamic axial loading is investigated using the continuum mechanics model and the minimum total energy method. The natural frequencies of the SWCNT and the critical dynamic axial load of the SWCNT and DWCNT are obtained using the Rayleigh-Ritz method. The effects of the elastic medium and the van der Waals forces between the two layers in the DWCNT are taken into account using the Winkler model and Lennard-Jones theory, respectively. The effect of the small length scale is also considered using the Eringen Model. The critical dynamic axial load is increased by inserting an inner carbon nanotube (CNT) into an isolated CNT embedded in an elastic medium.
Keywords:carbon nanotube, dynamic stability, energy method, elastic medium, axial loading.