Abstract:
An asymptotic solution of the Euler equations that describe stationary interaction of two hypersonic gas flows from two identical spherically symmetric sources and an integral equation determining the shock wave shape are obtained with the use of a modified method of expansion of the sought functions with respect to a small parameter, which is the ratio of gas densities in the incoming flow and behind the shock wave. The solution of this equation near the axis of symmetry allows the shock wave stand-off distance from the contact plane and the radius of its curvature to be found. It is shown that the solution obtained agrees well with the known numerical solutions.