Abstract:
An inverse extremum problem of boundary control for steady equations of thermal convection is considered. The cost functional in this problem is chosen to be the root-mean-square deviation of flow velocity or vorticity from the velocity or vorticity field given in a certain part of the flow domain; the control parameter is the heat flux through a part of the boundary. A theorem on sufficient conditions on initial data providing the existence, uniqueness, and stability of the solution is given. A numerical algorithm of solving this problem, based on Newton’s method and on the finite element method of discretization of linear boundary-value problems, is proposed. Results of computational experiments on solving extremum problems, which confirm the efficiency of the method developed, are discussed.