RUS  ENG
Full version
JOURNALS // Prikladnaya Mekhanika i Tekhnicheskaya Fizika // Archive

Prikl. Mekh. Tekh. Fiz., 2021 Volume 62, Issue 1, Pages 70–77 (Mi pmtf209)

This article is cited in 1 paper

Behavior of co-flow jets coupled with a longitudinal perturbation

D. Soltani, M. Shafaee

Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract: In this study, a numerical simulation is used to show the physics of a coupled forced perturbation and liquid jet in the presence of a low-velocity coaxial gas flow. The volume of fluid (VOF) approach is employed to capture the liquid–gas interface. A sinusoidal velocity with a finite frequency and amplitude is applied at the liquid jet inlet to define a forced perturbation. An annular gas flow with a velocity lower than that of the liquid jet is imposed to examine its influence on the liquid jet breakup mechanism. The annular gas flow is modulated by the sinusoidal velocity inlet, and the effect of this flow on the liquid jet breakup mechanism is analyzed. Different ratios of the gas velocity to liquid velocity are studied. The results indicate that the low-velocity gas flow can considerably affect the behavior of the liquid jet, and this effect becomes more significant as the amplitude of the forced perturbation increases.

Keywords: liquid jet, coaxial gas flow, forced perturbation, primary breakup, VOF.

UDC: 533.6

Received: 18.03.2020
Revised: 20.05.2020
Accepted: 25.05.2020

DOI: 10.15372/PMTF20210108


 English version:
Journal of Applied Mechanics and Technical Physics, 2021, 62:1, 63–69

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024