Abstract:
This paper gives a solution of the Laplace problem, which consists of finding all invariants of the hyperbolic equations and constructing a basis of the invariants. Three new invariants of the first and second orders are found, and invariant-differentiation operators are constructed. It is shown that the new invariants, together with the two invariants detected by Ovsyannikov, form a basis such that any invariant of any order is a function of the basis invariants and their invariant derivatives.
Keywords:Laplace invariants, integration of hyperbolic equations, equivalence transformations, semi-invariants.