Abstract:
Results of the experimental study and numerical modeling of the reflection of a dam–break wave at the vertical end wall of a channel are given. A wave forms with distance from a partition creating the initial level difference of the liquid. It is shown that a numerical calculation based on the Zheleznyak–Pelinovskii nonlinear dispersion model satisfactorily describes the height of the splash–up, the amplitude of reflected waves, and the wave velocity in front of the wall for smooth and dam–break waves. It is also shown that, for smooth and weakly breaking (without significant entrainment of air) incoming waves, the experimental values of the height of the splash–up at the wall agree well with relevant experimental and calculated data for solitary waves.