Abstract:
The physicochemical and thermophysical processes that jointly occur in intumescent heat- and fire-insulating coatings are studied numerically with the use of a model based on the hypothesis that the gaseous products of thermal expansion of an initial material are transparent. It is found that with the radiative mechanism of heat transfer in a layer of intumescent-coating coke taken into account, the temperature at the surface of a structure to be protected is almost equal to a temperature reached at this surface if a nonintumescent coating is used.