Abstract:
A method of solving the plane linear problem of a steady-state irrotational flow about a body under the free surface of a heavy fluid of finite depth is developed. The boundary-value problem is formulated for a complex perturbed velocity and is reduced to a singular integral equation relative to the intensity of a vortex layer that models the hydrofoil. The kernel of the equation is the exact solution of the corresponding boundary-value problem for a vortex of unit intensity. The equation is solved by the discrete-vortex method. The effect of the parameters of the problem on the hydrodynamic characteristics of the elliptical hydrofoil and the shape of the free surface are estimated numerically.