RUS  ENG
Full version
JOURNALS // Prikladnaya Mekhanika i Tekhnicheskaya Fizika // Archive

Prikl. Mekh. Tekh. Fiz., 2024 Volume 65, Issue 3, Pages 83–94 (Mi pmtf6100)

Heart rate effect on blood flow hemodynamics in a patient with a thoracic aortic aneurysm: numerical study

A. Farajia, M. Sahebia, S. S. Dezfoulib

a Qom University of Technology, Qom
b Amirkabir University of Technology, Tehran

Abstract: In this study, the effect of patient's physical activity in terms of the heart rate on the growth of the thoracic aortic aneurysm (TAA) is studied. Using medical images of the patient, a patient-specific geometry model is constructed. Then the hemodynamic parameters of the blood flow are numerically analyzed for different heart rate conditions. The simulation results show that the maximum wall shear stress, the maximum velocity, and the maximum pressure during a cardiac cycle increase by 19.1, 12.7, and 50%, respectively, as the heart rate increases from 60 to 174 beats per minute. Results also indicate that an increase in the heart rate leads to reduction of the time-averaged wall shear stress and simultaneously to an increase in the wall shear stress oscillations. According to the literature, these hemodynamic conditions are undesirable and can increase the likelihood of aneurysm development and aortic rupture.

Keywords: thoracic aorta aneurysms (TAA), oscillatory shear index (OSI), wall shear stress (WSS), heart rate, CFD.

UDC: 612.13

Received: 11.05.2023
Revised: 24.07.2023
Accepted: 04.08.2023

DOI: 10.15372/PMTF202315301


 English version:
Journal of Applied Mechanics and Technical Physics, 2024, 65:3, 465–475

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025