Abstract:
In this work, an exact analysis on the effects of heat generation and nanoparticle volume concentration on an unsteady free convective flow of a nanofluid past an impulsively started infinite vertical plate is presented. Nanofluids containing nanoparticles of aluminum oxide, copper, titanium oxide, and silver with a nanoparticle volume concentration range smaller than or equal to 0.04 are considered. The governing dimensionless partial differential equations are solved by using the Laplace transform technique. The effects of heat generation and nanoparticle volume concentration on the velocity and temperature profiles are represented graphically. The expressions for the skin friction coefficient and Nusselt number are derived. The effect of heat transfer is found to be more pronounced in a silver-water nanofluid than in the other nanofluids. Comparisons with other published results are found to be in excellent agreement.