RUS  ENG
Full version
JOURNALS // Prikladnaya Mekhanika i Tekhnicheskaya Fizika // Archive

Prikl. Mekh. Tekh. Fiz., 2024 Volume 65, Issue 6, Pages 40–64 (Mi pmtf9661)

Numerical study on the rigid motion of the object on the ground under shock waves

Q. Liu, J. Lei

Beijing Institute of Technology, Beijing, China

Abstract: Coupled aerodynamics and rigid body dynamics are used to develop a numerical method for the rigid motion of the object on the ground under shock waves based on the collision theory and dynamic mesh method. The effects of the mass and centroid height of the object on the rigid motion are analyzed. Furthermore, the effect of object motion on shock wave propagation is examined. The results suggest that the rigid motion behavior of the object remains similar under different positive pressure times; the motion laws of the object are similar under different masses, while a small mass can alter the rotational direction; increasing the centroid height can reverse the rotational direction, and diffraction may induce a further reversal when the centroid height increases to a certain value; the rigid motion reduces the pressure decay rate near the leeward side during shock wave propagation over the object.

Keywords: shock waves, ground contact, rigid motion, collision, numerical simulation.

UDC: 524.3-17

Received: 22.06.2023
Revised: 11.10.2023
Accepted: 27.11.2023

DOI: 10.15372/PMTF202315341


 English version:
Journal of Applied Mechanics and Technical Physics, 2024, 65:6, 1043–1065

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025