RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1985 Volume 21, Issue 4, Pages 17–33 (Mi ppi1003)

Methods of Signal Processing

Convergence Rate of Nonparametric Estimates of Maximum-Likelihood Type

A. S. Nemirovskii, B. T. Polyak, A. B. Tsybakov


Abstract: The authors obtain the rate of convergence of $M$-estimates of nonparametric regression in the $L_2$ metric. It is shown that, for classes of smooth, monotonic, and convex functions, this rate cannot be improved (to within a constant). It is established that in a number of cases, particularly for the class of mono-tonic functions, nonlinear $M$-estimates are better than any linear estimates in terms of the order of the rate of convergence.

UDC: 621.391.1:519.27

Received: 10.11.1983


 English version:
Problems of Information Transmission, 1985, 21:4, 258–272

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024