RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1984 Volume 20, Issue 1, Pages 12–18 (Mi ppi1117)

This article is cited in 3 papers

Coding Theory

Minimum Possible Block Length of a Linear Binary Code for Some Distances

S. M. Dodunekov, N. L. Manev


Abstract: Linear binary codes are considered. It is shown that if $d=2^{k-1}-2{k-i-1}-2^i$ or $2{k-1}-2^{k-i-1}-2^i-2$ and $k\geq2i+2$, the minimum possible block length of a code of dimension $k$ with code distance $d$ is
$$ 1=\sum^{k-1}_{j=0}\biggl\lceil\frac d{2^j}\biggr\rceil. $$


UDC: 621.391.15:519.72

Received: 04.05.1982


 English version:
Problems of Information Transmission, 1984, 20:1, 8–14

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024