RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2008 Volume 44, Issue 1, Pages 15–37 (Mi ppi1263)

This article is cited in 13 papers

Coding Theory

Bent and Hyper-bent Functions over a Field of $2^l$ Elements

A. S. Kuz'mina, V. T. Markovb, A. A. Nechaevb, V. A. Shishkina, A. B. Shishkova

a Moscow Institute of Radio-Engineering, Electronics and Automation
b M. V. Lomonosov Moscow State University

Abstract: We study the parameters of bent and hyper-bent (HB) functions in n variables over a field $P=\mathbb{F}_q$ with $q=2^l$ elements, $l>1$. Any such function is identified with a function $F:Q\to P$, where $P<Q=\mathbb{F}_qn$. The latter has a reduced trace representation $F=\mathrm{tr}^Q_P(\Phi)$, where $\Phi(x)$ is a uniquely defined polynomial of a special type. It is shown that the most accurate generalization of results on parameters of bent functions from the case $l=1$ to the case $l>1$ is obtained if instead of the nonlinearity degree of a function one considers its binary nonlinearity index (in the case $l=1$ these parameters coincide). We construct a class of HB functions that generalize binary HB functions found in [Youssef, A. M. and Gong, G., Lect. Notes Comp. Sci., vol. 2045, Berlin: Springer, 2001, pp. 406–419]; we indicate a set of parameters $q$ and $n$ for which there are no other HB functions. We introduce the notion of the period of a function and establish a relation between periods of (hyper-)bent functions and their frequency characteristics.

UDC: 621.391.15:519.1

Received: 18.06.2007
Revised: 18.12.2007


 English version:
Problems of Information Transmission, 2008, 44:1, 12–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025