RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2004 Volume 40, Issue 2, Pages 37–49 (Mi ppi131)

Coding Theory

On the Nonexistence of Ternary $[284,6,188]$ Codes

R. N. Daskalov, E. Metodieva

Technical University of Gabrovo

Abstract: Let $[n,k,d]_q$ codes be linear codes of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. Let $n_q(k,d)$ be the smallest value of $n$ for which there exists an $[n,k,d]_q$ code. It is known from [1, 2] that $284\leq n_3(6,188)\leq 285$ and $285\leq n_3(6,189)\leq 286$. In this paper, the nonexistence of $[284,6,118]_3$ codes is proved, whence we get $n_3(6,118)=285$ and $n_3(6,189)=286$.

UDC: 621.391.15

Received: 20.08.2003
Revised: 08.01.2004


 English version:
Problems of Information Transmission, 2004, 40:2, 135–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025