RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1992 Volume 28, Issue 1, Pages 75–88 (Mi ppi1338)

Methods of Signal Processing

Convergence of Stochastic-Approximation Procedures in the Case of a Regression Equation with Several Roots

V. A. Lazarev


Abstract: It is shown that the Robbins–Monro stochastic-approximation procedure cannot converge to the root $\tilde{x}$ of the regression equation $R(x)=0$ if at least one eigenvalue of the matrix $\frac{\partial R}{\partial x}(\tilde{x})$ has a positive real part. A similar result is obtained for the Kiefer–Wolfowitz procedure.

UDC: 621.391.1:519.27

Received: 19.03.1991


 English version:
Problems of Information Transmission, 1992, 28:1, 66–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025