RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1992 Volume 28, Issue 2, Pages 47–53 (Mi ppi1345)

This article is cited in 1 paper

Coding Theory

New Packings on a Finite-Dimensional Euclidean Sphere

V. A. Zinov'ev, T. Ericson


Abstract: A spherical code is a finite set of points in a sphere of radius 1 in the $n$-dimensional Euclidean space with a given minimum distance $\rho$. The cardinality of the best spherical code with distance $\rho=1$ is called the contact number $\tau_n$. Leech and Sloane (1971) demonstrated how to construct spherical codes using binary block cods (both constant-weight and ordinary). Here we propose new constructions that improve the lower bounds on the cardinality of spherical codes with $\rho\leq 1$ for $n\leq 64$.

UDC: 621.391.1:513

Received: 12.05.1991


 English version:
Problems of Information Transmission, 1992, 28:2, 141–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024