RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1981 Volume 17, Issue 2, Pages 10–18 (Mi ppi1388)

Information Theory and Coding Theory

On $B$-Functions Encountered in Modular Codes

S. D. Berman, I. I. Grushko


Abstract: Assume that $f(x)$ is a function from $GF(2^m)$ to $GF(2)$. Function $f(x)$ is called a $B$-function if all its Fourier–Hadamard coefficients $\sum_u(-1)^{ux+f(x)}$ are equal to $\pm2^{m/2}$. $B$-functions play an important part in coding theory, particularly in the creation of Kerdock and Hadamard codes. The problem of classifying $B$-functions of degree 3 is considered.

UDC: 621.391.15:512.8

Received: 11.12.1979
Revised: 01.12.1980


 English version:
Problems of Information Transmission, 1981, 17:2, 82–88

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024