RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1980 Volume 16, Issue 4, Pages 3–8 (Mi ppi1456)

This article is cited in 3 papers

Information Theory and Coding Theory

Bounds on the Average Error Probability for a Code Ensemble with Fixed Composition

A. G. D'yachkov


Abstract: The author obtains the logarithmic asymptotic form of the average error probability over a code ensemble with fixed composition [R. M. Fano,Transmission of Information: A Statistical Theory of Communications, New York, MIT Press, 1961] for the case of decoding by a list of fixed length $l\geq 1$, for a discrete memoryless channel. The exponent of the error probability is represented in an analytic form analogous to that of the exponent of the spherical packing bound for codes with fixed composition introduced by E. A. Haroutunian in [Probl. Peredachi Inf., 1968, vol. 4, no. 4, pp. 37–48]. In the particular case $L=1$, corresponding to classical decoding this exponent coincides with the exponent of the upper bound proved by Fano.

UDC: 621.391.15

Received: 30.05.1978


 English version:
Problems of Information Transmission, 1980, 16:4, 255–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025