RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1978 Volume 14, Issue 3, Pages 24–34 (Mi ppi1543)

This article is cited in 3 papers

Information Theory and Coding Theory

Some New Maximal Codes over $GF(4)$

I. I. Dumer, V. A. Zinov'ev


Abstract: For lengths $n\geq 5$ the authors construct linear codes over $GF(4)$ that correct two errors and have maximum possible numbers (from the standpoint of the Hamming bound) of information symbol $k$. The first nontrivial example of these new codes is a 4-ary ($n=11$, $k=6$, $d=5$) code. Its extension is a $(12,6,6)$ code and is interesting in that changing over to the binary form of elements of $GF(4)$ yields a $(24,12,8)$ Golay code. Thus this unique code can be represented in cascade form.

UDC: 621.391.15

Received: 01.07.1976


 English version:
Problems of Information Transmission, 1978, 14:3, 174–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024