RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1975 Volume 11, Issue 2, Pages 37–60 (Mi ppi1583)

This article is cited in 3 papers

Methods of Signal Processing

Approximation of $L_2(\omega_1,\omega_2)$ Functions by Minimum-Energy Transfer Functions of Linear Systems

M. G. Krein, P. Ya. Nudel'man


Abstract: The approximation with specified error in $L_2(\omega_1,\omega_2)$ metric of an arbitrary function $F\in L_2(\omega_1,\omega_2)$ by a physically realizable transfer function of a linear system (network) with minimum energy is investigated. The problem is solved on the basis of a spectral decomposition constructed for an integral operator in $L_2(0,\infty)$ with kernel
$$ \frac{\sin\omega_2(t-s)}{\pi(t-s)}-\frac{\sin\omega_1(t-s)}{\pi(t-s)} $$
Secondarily, a criterion is found for a predetermined function $F\in L_2(\omega_1,\omega_2)$ to coincide almost everywhere on $(\omega_1,\omega_2)$ with a certain physically realizable transfer function $G_0$, and a rule is given for reconstructing the function $G_0$ from $F$ in the appropriate complex half-plane.

UDC: 621.391.1:51

Received: 29.07.1974


 English version:
Problems of Information Transmission, 1975, 11:2, 124–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024