RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 1966 Volume 2, Issue 3, Pages 3–22 (Mi ppi1954)

This article is cited in 4 papers

Stochastic Equations of Nonlinear Filtering of Markovian Jump Processes

A. N. Shiryaev


Abstract: Let $(\theta_t,\eta_t)$ be a Markov process where $\theta_t$ is a non-observable component which is a Markovian jump process, and $\eta_t$ is the observable component satisfying the equation
$$ d\eta_t=A(\theta_t,\eta_t,t)dt+B(\eta_t,t)dW_t,\,\eta_0=0 $$
. This paper derives stochastic equations which the a posteriori probabilities $\pi_t(\mathfrak A)=\mathbf P\{\theta_t\in\mathfrak A/\eta(\tau),\,\tau\leq t\}$ satisfy [see Eq. (4)] and which are sufficient statistics in various problems in nonlinear filtering, extrapolation, in optimal control problems, pattern recognition, etc.

UDC: 519.27

Received: 20.01.1966


 English version:
Problems of Information Transmission, 1966, 2:3, 1–18

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025