RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2009 Volume 45, Issue 2, Pages 78–83 (Mi ppi1979)

This article is cited in 5 papers

Coding Theory

On weak isometries of Preparata codes

I. Yu. Mogil'nykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Two codes $C_1$ and $C_2$ are said to be weakly isometric if there exists a mapping $J\colon C_1\to C_2$ such that for all $x,y$ in $C_1$ the equality $d(x,y)=d$ holds if and only if $d(J(x),J(y))=d$, where $d$ is the code distance of $C_1$. We prove that Preparata codes of length $n\ge2^{12}$ are weakly isometric if and only if the codes are equivalent. A similar result is proved for punctured Preparata codes of length at least $2^{10}-1$.

UDC: 621.391.15

Received: 11.01.2009
Revised: 17.03.2009


 English version:
Problems of Information Transmission, 2009, 45:2, 145–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025