RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2007 Volume 43, Issue 3, Pages 75–96 (Mi ppi20)

This article is cited in 2 papers

Large Systems

Exact Asymptotics of Distributions of Integral Functionals of the Geometric Brownian Motion and Other Related Formulas

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove results on exact asymptotics of the probabilities
$$ \mathbf P\biggl\{\int\limits_0^1e^{\varepsilon\xi(t)}\,dt>b\biggr\},\qquad \mathbf P\biggl\{\int\limits_0^1e^{|\varepsilon\xi(t)|}\,dt>b\biggr\},\qquad \varepsilon\to0, $$
where $b>1$, for two Gaussian processes $\xi(t)$, namely, a Wiener process and a Brownian bridge. We use the Laplace method for Gaussian measures in Banach spaces. Evaluation of constants is reduced to solving an extreme value problem for the rate function and studying the spectrum of a second-order differential operator of the Sturm–Liouville type with the use of Legendre functions.

UDC: 621.391.1:519.2

Received: 01.03.2007


 English version:
Problems of Information Transmission, 2007, 43:3, 233–254

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025