RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2011 Volume 47, Issue 1, Pages 19–32 (Mi ppi2034)

This article is cited in 5 papers

Coding Theory

On metric rigidity for some classes of codes

D. I. Kovalevskaya

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk

Abstract: A code $C$ in the $n$-dimensional metric space $\mathbb F^n_q$ over the Galois field $GF(q)$ is said to be metrically rigid if any isometry $I\colon C\to\mathbb F^n_q$ can be extended to an isometry (automorphism) of $\mathbb F^n_q$. We prove metric rigidity for some classes of codes, including certain classes of equidistant codes and codes corresponding to one class of affine resolvable designs.

UDC: 621.391.15

Received: 23.04.2010
Revised: 10.12.2010


 English version:
Problems of Information Transmission, 2011, 47:1, 15–27

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024