RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2012 Volume 48, Issue 2, Pages 65–78 (Mi ppi2075)

This article is cited in 2 papers

Methods of Signal Processing

Sequential estimation of a threshold crossing time for a Gaussian random walk through correlated observations

M. V. Burnasheva, A. Tchamkertenb

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Communications and Electronics Department, Télécom ParisTech, France

Abstract: Given a Gaussian random walk $X$ with drift, we consider the problem of estimating its first-passage time $\tau_A$ for a given level $A$ from an observation process $Y$ correlated to $X$. Estimators may be any stopping times $\eta$ with respect to the observation process $Y$. Two cases of the process $Y$ are considered: a noisy version of $X$ and a process $X$ with delay $d$. For a given loss function $f(x)$, in both cases we find exact asymptotics of the minimal possible risk $\mathbf E f((\eta-\tau_A)/r)$ as $A,d\to\infty$, where $r$ is a normalizing coefficient. The results are extended to the corresponding continuous-time setting where $X$ and $Y$ are Brownian motions with drift.

UDC: 621.391.1+519.2

Received: 09.02.2012
Revised: 13.04.2012


 English version:
Problems of Information Transmission, 2012, 48:2, 142–153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025