RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2012 Volume 48, Issue 3, Pages 96–110 (Mi ppi2089)

This article is cited in 3 papers

Large Systems

Fine structure of a one-dimensional discrete point system

V. A. Malyshev

Laboratory of Large Random Systems, Faculty of Mathematics and Mechanics, Lomonosov Moscow State University

Abstract: We consider a system of $N$ points $x_1<\dots<x_N$ on a segment of the real line. An ideal system (crystal) is a system where all distances between neighbors are the same. Deviation from idealness is characterized by a system of finite differences $\nabla_i^1=x_{i+1}-x_i$, $\nabla_i^{k+1}=\nabla_{i+1}^k-\nabla_i^k$, for all possible $i$ and $k$. We find asymptotic estimates as $N\to\infty$, $k\to\infty$, for a system of points minimizing the potential energy of a Coulomb system in an external field.

UDC: 621.391.1+519.2

Received: 30.11.2011
Revised: 28.05.2012


 English version:
Problems of Information Transmission, 2012, 48:3, 283–296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024