Abstract:
We derive a lower bound on the secrecy capacity of a compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. [1], thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability criterion, and with a decoder that is robust against the effect of randomization in the encoding. This relieves us from the need of decoding the randomization parameter, which is in general impossible within this model. Moreover, we prove a lower bound on the secrecy capacity of a compound wiretap channel without channel state information and derive a multiletter expression for the capacity in this communication scenario.