RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2015 Volume 51, Issue 2, Pages 27–49 (Mi ppi2168)

This article is cited in 11 papers

Coding Theory

Almost disjunctive list-decoding codes

A. G. D'yachkov, I. V. Vorob'ev, N. A. Polyansky, V. Yu. Shchukin

Probability Theory Chair, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We say that an $s$-subset of codewords of a binary code $X$ is $s_L$-bad in $X$ if there exists an $L$-subset of other codewords in $X$ whose disjunctive sum is covered by the disjunctive sum of the given $s$ codewords. Otherwise, this $s$-subset of codewords is said to be $s_L$-good in $X$. A binary code $X$ is said to be a list-decoding disjunctive code of strength $s$ and list size $L$ (an $s_L$-LD code) if it does not contain $s_L$-bad subsets of codewords. We consider a probabilistic generalization of $s_L$-LD codes; namely, we say that a code $X$ is an almost disjunctive $s_L$-LD code if the fraction of $s_L$-good subsets of codewords in $X$ is close to 1. Using the random coding method on the ensemble of binary constant-weight codes, we establish lower bounds on the capacity and error exponent of almost disjunctive $s_L$-LD codes. For this ensemble, the obtained lower bounds are tight and show that the capacity of almost disjunctive $s_L$-LD codes is greater than the zero-error capacity of disjunctive $s_L$-LD codes.

UDC: 621.391.15

Received: 16.09.2014
Revised: 28.01.2015


 English version:
Problems of Information Transmission, 2015, 51:2, 110–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024