RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2017 Volume 53, Issue 2, Pages 40–59 (Mi ppi2234)

This article is cited in 3 papers

Coding Theory

MDS codes in Doob graphs

E. A. Bespalov, D. S. Krotov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: The Doob graph $D(m,n)$, where $m>0$, is a Cartesian product of $m$ copies of the Shrikhande graph and $n$ copies of the complete graph $K_4$ on four vertices. The Doob graph $D(m,n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n,4)$. We give a characterization of MDS codes in Doob graphs $D(m,n)$ with code distance at least $3$. Up to equivalence, there are $m^3/36+7m^2/24+11m/12+1-(m\bmod2)/8-(m\bmod3)/9$ MDS codes with code distance $2m+n$ in $D(m,n)$, two codes with distance $3$ in each of $D(2,0)$ and $D(2,1)$ and with distance $4$ in $D(2,1)$, and one code with distance $3$ in each of $D(1,2)$ and $D(1,3)$ and with distance $4$ in each of $D(1,3)$ and $D(2,2)$.

UDC: 621.391.15

Received: 06.02.2016
Revised: 04.12.2016


 English version:
Problems of Information Transmission, 2017, 53:2, 136–154

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025