Abstract:
We consider the Mollard construction from the point of view of its efficiency for detecting multiple bit errors. We propose a generalization of the classical extended Mollard code to arbitrary code lengths. We show partial robustness of this construction: such codes have less undetected and miscorrected errors than linear codes. We prove that, for certain code parameters, the generalization of the Mollard construction can ensure better error protection than a generalization of Vasil'ev codes.