RUS  ENG
Full version
JOURNALS // Problemy Peredachi Informatsii // Archive

Probl. Peredachi Inf., 2018 Volume 54, Issue 4, Pages 51–59 (Mi ppi2280)

This article is cited in 4 papers

Coding Theory

On the complexity of Fibonacci coding

I. S. Sergeev

Federal State Unitary Enterprise “Kvant Scientific Research Institute”, Moscow, Russia

Abstract: We show that converting an $n$-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity $O(M(n)\log n)$, where $M(n)$ is the complexity of integer multiplication. For a more general case of $r$-Fibonacci representations, the obtained complexity estimates are of the form $2^{O(\sqrt{\log n})}n$.

UDC: 621.391.15:519.72

Received: 30.05.2018
Revised: 30.05.2018
Accepted: 18.09.2018


 English version:
Problems of Information Transmission, 2018, 54:4, 343–350

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025